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Abstract 

I show that the heavy quark fragmentation function is calculable to 

leading order in the inverse heavy mass. This implies that the production 

of a heavy particle (with one heavy quark) with a given momentum is calcul- 

able. In first approximation the function is 6(1-x). The peak at x=1 is 

however not of zero width, but has a width on the order of the inverse mass, 

I determine the shape of the function for x near 1. Lastly I show that the 

spin of the heavy quark does not flip during its fragmentation. This paper 

extends the work of Mueller, Sterman and others.' 
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Introduction - 

The principal result of this paper is that the probability to pro- 

duce a heavy particle (e.g. in et-e-) with a given momentum is calculable. 

By heavy particle I mean one with a single heavy quark. The result is 

derived in the spirit of recent work' that develops a firm QCD basis, in per- 

turbation theory, for the parton model. The approach is essentially theory 

independent. I give the explicit demonstration for pi and for an abelian gauge 

theory. 

In parton model language the statement is: 1) that heavy particles 

are produced only through the fragmentation of heavy partons, and 2)that a heavy 

parton fragments into a heavy particle with the same forward momentum. 1) 

and 2) are true up to corrections of order U/M , where M is the heavy mass. 

u is characteristic of the light hadronic scale, and is q~,l Gev 

Thus the fragmentation function (FF) for a final heavy particle is 

,~6(1-x) . This form was proposed some time ago, and several arguments for it 

have been given.2'3 

The FF is a delta function only in first approximation--the peak at x=1 is 

actually not of zero width. I will derive the shape of the FF for x near 1 . 

It is pictured in fig. 13. 

Lastly, I show that spin flips of the fragmenting heavy quark are sup- 

pressed. This determines the helicities with which spinning heavy particles 

are produced. If the quark is heavy enough, so that its weak decay is fast, 

then it will decay before its spin flips. The spin of the quark becomes dir- 

ectly observable. There is no longer sufficient time to produce a heavy had- 

ron. 

Since the correction to the main result is of order lGev/M , the 
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result should apply to the bottom quark. 

Sketch of the Argument 

An explicit definition of the fragmentation function has been provided 

by Mueller.4 His (time-like) cut vertices are essentially moments of the FF . 

His results give a parton model picture, expressed in the form of the Operator 

Product Expansion (OPE). To leading order, an inclusive production process, 

e.g. e+e- + H(p) + X (fig. l), is factorized into a calculable function C -- 

a generalization of the Wilson's coefficient that represents the short time hard 

interaction of partons -- convoluted with the FF . 

x 

da 
e+e- i H(p)+X(Q 

',x=Q'/2Q.p,p') = 

I 

dz, C z- e+e-+qi (Q’ ,z)Fqi+H(% ,p) 

' qijH > 
generalizes the idea of an operator matrix element, with the 

fragmenting parton qi corresponding to the operator, and the observed hadron 

to the statebetween which the operator is evaluated. It is defined so as to 

approximate the usual definition: the probability for qi(yzp)-bH(p)+X, over 

long times. 

The FF F 

Mueller takes moments, and works always with the cut vertices. Since 

I need the FF itself, I will slightly rephrase his work (following Collins, 

Baulieu et al. 5, 

My argument is based on kinematics. Imagine fragmentation as a physical 

process, with freely propagating on-shell partons interacting only at points. 

An initial light parton fragments in a cascade. Kinematics permit it to split 

into several collinear light fragments, which may then split further. The 

original forward momentum is divided among the final products. In contrast, 
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an initial heavy quark (which cannot decay via the strong interaction) can- 

not lose any of its forward momentum. It is dressed by soft gluons into a 

heavy hadron with the same momentum. 

The work lies in showing that Mueller's definition gives this physi- 

cal picture of fragmentation. From one point of view this is a familiar task. 

The renormalization program can be considered as the demonstration that 

unphysically high virtual momenta do not contribute uncontrollably to low 

momentum processes. A better analogy is that of an operator renormalized and 

evaluated at a low momentum scale. The dominant contribution to the Feynman 

integral comes from low momentum flows. The unphysical region is cut off by 

subtracting counterterms. 

Unphysical contributions to the FE are cut off in the same way. The 

FF as defined here is renormalized at the equivalent of the low momentum scale 

above. Counterterms serve again to eliminate the 'large" momentum region. 

The result is that the dominant contributions to the FF come from physical 

configurations, to which the above kinematic argument applies. 

In fact, all of the machinery developed to isolate and understand 

large momentum contributions to Feynman diagrams, in renormalization and in 

the OPE, can be taken over bodily as Mueller has done. Especially for 4,: , 

the proof of factorization looks the same as that of the OPE. The demonstra- 

tion that heavy partons do not decay into light particles is similar to the 

proof that the matrix element of a heavy operator between light states is sup- 

6 
pressed. 

This is not the whole story. That the form of the proof is the same 

should not disguise the fact that kinematics for the OPE and for factoriza- 

tion differ drastically. For a complete proof, one must combine the old OPE 



type approach with the new understanding of the kinematics of a production 

process? 

The problem with a production process is that the particles produced 

are physical -- their momenta are time-like Minkowskian. For the OPE the 

Feynman diagram can be treated as though all momenta were Euclidean. In Min- 

kowski space propagators are more likely to go on shell, making the Feynman 

integrand big and causing new large mass-dependent contributions to the 

Feynman integral. The dependence on large momentum becomes harder to separ- 

ate out -- it threatens to become inextricably tangled up with that on small 

momenta and masses. This new IR type of contribution must be understood 

before one attempts to isolate the dependence on large momentum, as in fac- 

torization, or to estimate the contribution of an unphysical large momentum 

flow to a diagram, as I must do here. 

A detailed understanding of the IR for Feynman diagrams describing 

production processes has been provided by Sterman and others.' 

The results of ref. 1 imply that the IR contributions to the FF come 

only from subprocesses that realize the physical picture of fragmentation 

above. The unphysical part of the fragmentation process then has all its 

lines effectively far off shell. This virtual part of the FF s effectively 

virtual. It has no leading dependence on small momenta, but is scaled by 

large momenta. It can therefore be handled in the same way as are the large 

virtual momentum flows in the more familiar context of the OPE. Just as 

large momentum flows do not contribute to the operator matrix element, so is 

the unphysical contribution to the FF suppressed. 

To summarize the main argument: I consider the FF for a heavy quark 

turning into a heavy hadron,Fh_H . If these do not have the same forward 
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momentum, then some part of the fragmentation must be unphysical -- in phys- 

ical fragmentation the heavy quark retains its forward momentum. However I 

will show that unphysical contributions to the FF are suppressed. The FF can 

only be large for x near 1 , where x is the ratio of the two forward 

momenta. 

Summary of the Paper 

I will discuss a @z theory in part I, and an abelian gauge theory in 

part II. Like Mueller, I take all light partons to have mass m 7, U . In 

part II I work in the Feynman gauge. 4 The result is gauge invariant. 

In section IA I define and renormalize the FF The definition is 

based on the work of Mueller4, and on ref:-5 

In IB I present the argument summarized above. 

IC completes the proof of the main result. I show that a heavy (light) 

parton does not fragment into a light (heavy) hadron. I then use the Energy- 

Momentum sum rule to normalize the FhtH . I find that Fh+ = 6(1-x)tO(uz/M2). 

IIA defines and renormalizes the FF for an abelian gauge theory. 

In IIB I apply the methods develop in ref. 8 to understand IR diver- 

gences. I briefly discuss one potential difficulty in the application of those 

methods to the FF 

Section IIC rederives the result of IB for an abelian gauge theory. 

In IID I discuss the shape of Fh+H for x near 1 . I again make use 

of the methods of ref. 8 , especially the IR power counting procedure. 

Section IIE investigates the shape of the heavy to light FF, FbL , 

for x>>l I show that the energy going into soft light particles from an ini- 

tial heavy quark is small. (But it is bigger than the energy going into hard 
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light particles.) From energy conservation I can then normalize FbH , as 

Lastly, in IIF, I recast the previous argument to take into account 

the spin of the heavy quark as it fragments. 
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1A IA -- Definition of the Fragmentation Function 495. 3 . y6 

The unrenormalized FF,Fun, is defined in terms of a cut Green's func- 

tion G(k,p), illustrated in fig. 2. In addition to the amputated final 

hadron lines, G has two external unamputated lines, one on either side of the 

cut. These lines represent the fragmenting parton and have [momentum k . 

Then Fun = k+ dk-d4k 
i 

where the factor k 
t 

F un 
(3 

G(k2,p2,k.p) is included to make 

dimensionless and boost invariant.5 I work in the infinite momentum frame4, 

with p = (pt,mi/2pt = p-,0 = p) 

F un has W divergences due to the integration of the initial hanging 

lines over arbitrarily large transverse momenta. For example fig. 3 has a 

logarithmic divergence: 

1 
$2-mz+iE k22-m2-iC (-iTr)(S((k-o)2-m2) 

- f&-x-1j d’+k &,(x-ljjz > with x : k+/p+ 

The FF therefore requires renormalization. 

The renormalized FF may be written:5 

Fren(x) = i % k(n) Fun (ilx) 

l/x 

This is analogous to the renormalization of an operator 0: Oren = ZO'" . 

k , like Z , is given by a sum of counterterms. 

Each counterterm is a divergent subdiagram evaluated with its exter- 

nal legs at the renormalization point pT . As for the matrix element of an 

operator, the divergent subdiagrams have just two external legs in addition 

to the initial unamputated lines. Since the divergence of such a subdiagram 

depends on the plus momentum in its external lines, p: must be allowed to 
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I chose the following renormalization convention: 

p; = p; = 2 = 0 for light external lines 

p: = M2 ' p- = M2/ T 2p+ ,g = 0 for heavy external lines. 
7 

A line with momentum p 
T 

is then near shell and collinear with the 

final hadron. The renormalization is physical in that particles with such 

momenta appear in a physical picture of the fragmentation process. The above 

convention is analogous to renormalizing an operator at a low momentum scale. 

As a result of this renormalization choice, unphysical configurations will 

be suppressed. 

IB -- The Fragmentation Function for a Heavy Quark 

I will show in this section that the fragmentation of a heavy quark 

to a heavy hadron is suppressed unless their plus momenta are the same. The 

relevant FF, Fh+H(k+,p), is illustrated in fig. 4. I consider the case when 

x = k&/p+>,>1 . 

The first remark is that for x>>l some part of the fragmentation is 

unphysical. 

The propagators for the unamputated lines are 

'/ ikZ-MZl* 

and p=(pc,M$2pt,~) 

MH is the heavy hadron mass; MH 'li M . 

It must be true that: 
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(k-p)' : 0 

since the momentum crossing the cut is physical and time-like. But then: 

(k:-,.,*) ; (x-l),,,* 1, ,v,' for x :0 1 . 

This is the crucial kinematical result. The propagators are : s,, 

and F can be order one only if the integration over large transverse momenta 

(: M) compensates for this factor. 

However Fren is UV finite, so the integral over the large transverse 

momentum region is also suppressed. This is the reasoning of refs. 6 and 7. 

Take the diagram of fig. 5 as an example. The final "hadron" is here 

an off shell heavy quark. I have 

‘L k+ (dk-d4k 
1 

- 
~k'-M2~2 

(s(k-p)2-m2) z R((k-pr(pt))'-m') 

= * * & + X(,,,‘+,2)+(x-,)M2)2 - -+ 
H (G&l) 

+(x-l)Mz)' 

! 
X(M;-M')t(x-l)M2 

(x-1)M' 

Notice that the large k: region is cut off by the subtraction. 

I repeat the argument concerning the UV in more detail below. I exam- 

ine the contributions of the possible large transverse momentum flows, and 

show that every one is suppressed. 

For each such flow there is a corresponding subdiagram (the hard 

part) composed of the lines through which the large momentum flows. The con- 

tribution of a hard part, integrated over large transverse momenta of order 

Q ,< M, is, from power counting:4 

4 
4-2E 
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E is the number of amputated external lines of the hard part. 4-2E is the 

integrated hard part's dimension. The contribution of the rest of the dia- 

gram, integrated over small transverse momenta, is at most of order MO. 

The only contributions not suppressed by a power of yM2 are those 

for which the hard part has E=2. But a subdiagram with E=2 is UV divergent. 

F ren contains a term that cancels this divergence, in which the hard part 

subdiagram is replaced by a counterterm. The counterterm is given by the same 

subdiagram, but with its external lines at the renormalization point. 

The difference of the two terms integrated over the given momentum 

flow may be written: 

k+ jdk-dyk der {H(k,r)-H(k,pT(rt))] S(r,p) 

/&%qz &<Q2 

This is illustrated in fig. 6. 

H(k,r) is the hard part integrated over internal transverse momenta 

of order Q with the indicated external momenta. S represents the rest of the 

diagram, integrated only over small transverse momenta. If the initial propa- 

gators of S are each n, ,!& then S : vM,+ If they are each -u & , then the 

initial lines ofs are heavy, and r-'/p'- 1 'L ,J~/M* , rz I u2<dM2 . 

Then 

k+ 
I 

dk-dhk(H(k,t-)-H(k,pr(rt)) 1, (r-pT)2/Q2 il P'/Q' 

k%Q2 - 

The contribution of momentum flows with E=2 is also suppressed. It 

follows that FhiH(x) ?I L>/M~ for x>>l 
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K Normalization of F 
h+H 

Implicit in the above was the argument that the fragmentation of 

a light parton to a heavy hadron is suppressed by pi-/M2 The demonstration 

that a heavy parton does not fragment to a light hadron is similar. 

If the light hadron has a non-vanishing fraction w of the plus 

momentum of the initial parton--w=l/x>>u/M--then from kinematics the initial 

propagators are far off shell. From power counting, the only momentum flows 

that might redress the propagator suppression are those for which the hard 

subdiagram has two light external legs. These flows are cancelled as before 

by counterterms. 

Thus 

F::;(X) T p2/M2 , F;::(x) x 112/Mz for x<<M/~ . 

I have shown that FhiH is suppressed for x>>l Thus the FF may be 

approximated by: 

Fh+h(x) '4 C6(1-x) 

C can be determined by means of the energy momentum sum rule: 4,g 

;;;(w) + F;;;(w)) = 1 . 

0 

This expression is just the statement of energy conservation. The 

integrand corresponds to F(pZ)E 2 , where 

E,P ?i w are the energy and momertum of the final h#ltlt-on. 

From arguments that I will postpone to the next section, the behavior 

of Fh.,&w) f or w<<l is such that: 

'dw - 
;wa F h+Lh) Q b2/M* . 

h 
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Thus C = 1 + O($$,FhlH(x) z s(l-x)+O(u2/M2) . 

This implies that 1s w'*F n,H(w) = 1 The average number of 

heavy hadrons produced by a heav$ parton is one, as expected. 
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II - Abelian Gauge Theory 

I will now derive the above results for an abelian gauge theory. 

The approach, except for technical complications, is the same as for z;: 

I work in the Feynman gauge. 

IIA - The Fragmentation Function in an Abelian Gauge Theory 

The FF is defined in terms of the cut Green's functions Gz and Gb) 

shown in fig. 7. Since I am interested in the fragmentation of heavy quarks, 

I will not discuss ib, which represents the fragmentation of a gluon. 

G!i(r,kl...ki;kLtl... n k ,r';p) has two external unamputatsd fermion lines 

and n unamputated gluon lines. The final hadron lines of GI are amputated. 

The usual spin sum factor (e.g.t+M) is included on these lines if the hadron 

is not scalar. 

Each external gluon line attaches at ay+ vertex in the body of G. The 

external fermion lines, one on either side of the cut, are joined at a y 
+ 

vertex. 

The fermion unrenormalized FF is then defined by: 

F;"(s+,P) = ,&, $, n I[ $ ] zF 1 &, st(.j(st-ri-~~)G~(r.ki...kbt ) 

g is the coupling constant. 

The external momenta on the left (right) of the cut are incoming (out- 

going). 

This F:" is not gauge invariant. The gauge invariant FF is obtained 
,_ 

by summing over all n: F'I" = " / 
lnv & 

F;" 

The divergent subdiagrams of the FF are pictured in fig. 8. From 

power counting, one finds that they can have at most two external amputated 
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fermion lines. But such diagrams may have in addition an arbitrary number 

of plus polarized external gluons? (A plus polarized gluon attaches at a y- 

vertex.) 

Alternatively, a divergent subdiagram may have just two external 

gluon lines (fig. 8b). 

The divergence of the first type of subdiagram may be related by 

gauge invariance to that of a subdiagram with only two fermion external 

lines.4 This is shown in fig. 9. 

Div ( G(p+k,,>p’!) = i [$ giv { G’(~,~‘)\ 
1 

G is the sum over a gauge invariant set of subdiagrams. G' is the same sum, 

but without the external gluons. 

In renormalizing, then, counterterms may be defined in terms of sub- 

diagrams with just two external lines. AS before counterterms are evaluated 

with the external lines at momentum p, 

For light fermion external lines, a y- = p:f-/p: L 15~ /p: , simula- 

ting a spin sum factor, is included in the definition of the counterterm. 
4 

For heavy fermion lines, a factor (@,+M)/p+ is used instead. Thus if a 

divergent subdiagram with two amputated external heavy lines is DE,,,(s+,p), 

the corresponding counterterm is 



-17- 

IIB - Fh,H and IR Divergences 

I will now treat the fragmentation of a heavy quark to a heavy had- 

ron. The approach is complementary to that of the first part. I will again 

consider the contributions of different momentum flows to the Feynman inte- 

gral, but the emphasis will be on the soft part of the flow rather than the 

hard. For a given momentum flow the soft part is roughly the largest cut 

subdiagram that contains the hadron lines and that has all external lines 

near shell and nearly collinear. 

I investigate the soft part by means of the methods developed in 

refs. 8,l. These papers study the appearance of IR divergences in massless 

cut Green's functions. An IR divergence is associated with a reduced diagram 

that can be considered a space time picture of a physical process. 

Here I wish to determine the soft parts that make order MO contribu- 

tions to the FF. If the light mass scale were taken to zero these soft parts 

would give rise to IR divergences. The MC contribution of the soft part is 

due to reduced diagram configurations that are physical in the ~0 limit. 

The leading reduced configurations for Flu-yH(x),x>>l, are as shown 

in fig. 10. 

An on-shell heavy quark emerges from a contracted vertex and is dressed 

by zero momentum gluons into a heavy hadron. These soft gluons may attach 

anywhere along the heavy lines. The initial contracted vertex represents 

the hard part. Its lines are effectively far off shell:p2-m2 ?, M2 

There is one important subtlety in the derivation of the above conclu- 

sions. The analysis of ref. 8 dealt with cut Green's functions that correspon- 

ded to physical processes, such as e+e-- jet] + jet,+ anything. The massless 

FF seems to have new types of IR divergences due to the l/k+ factors associa- 
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ted with external gluons. This possibility is eliminated by a simple exten- 

sion of the previous arguments. 
10 

One must choose the correct I! prescrip- 

tion in defining the l/k+ factor. The new type of divergence cancels between 

diagrams in which the initial gluons are on different sides of the cut. 

IIC - Suppression of Fh_H for ~"'1 

It is now possible to show the suppression of Fh,H for xa'l The 

dominant momentum flows are as shown in fig. 10. The hard part, or the initial 

contracted vertex, has just two external lines. There is therefore a counter- 

term graph corresponding to it in Fren . ‘Since Fren is UV finite, the Q' 

behavior of the graph and countergraph cancels between them, when Qh)M. Here 

Q characterizes the transverse momenta in the hard part and counterterm sub- 

diagram. This cancellation occurs because the leading behavior of the subdia- 

grams is proportional to U+ The definition of the counterterm C is: 

2 s)'Q,\ t o+l)'/Q') 

where b(px) is a d' ivergent subdiagram integrated over transverse momenta %Q and 

-7 ' 
is the divergent scalar coefficient of the Y 

c C\ 
", term of ~~ . The differ- 

ence of graph and countergraph for the momentum flow under consideration is: 

jdht 
yc c ,;“ 

[ 63w c c p,i~‘) I Y+] 8 cc $ 2 j& [$w Qic P,cbtj$tsQ$ 
, c\-,x “~ 

By the same reasoning as for $1, this is qpr;* for ,',> /y-J-. 



When Q*fl then 

For the leading ly" behavior to cancel between graph and countergraph it must 

be true that 5 iy py> + i !,WM ) . If this is so then the difference is: 

P+ Y 

/ ,-,, 
f& : 

J 

,, J. .+ i ~- '1 i py\ d i- '1 '; (. Fj F 1 

a -a/AX 1 

I f, 
*, \L”b 

j 
t t i 1 

_ -Px r.1 

where 5 is the coefficient in 5 ofla,+y;/,LT 

The Ma behavior of the hard part cancels: tr 
(@,+M) f 

r+ 
:D(r)-D(prb2/MS . 

I must therefore show that the soft part S is of the prescribed form. 

In the important soft configurations the heavy quark interacts with soft lines 

8 
at 3 point vertices. In fact it has just coulomb interactions. This is so 

because in the hadron rest frame the heavy quark is non-relativistic. The 

strength of a spin interaction is proportional to the velocity imparted by 

it to the heavy quark, and thus is small. 

The numerator at a soft interaction vertex is of the form: 

@w~)d,f,~+k+~~) = ~P,+-+M + a(~<, p'-Mkj 
k and p'-M2 are small since the gluon is soft and the heavy quark is near shell 

in the soft part. Thus a gluon interaction preserves the @+M structure of the 

numerator. The soft part is as desired. 

Corrections to the @+M behavior of the soft part are suppressed by a 

factor ii/M due to a single spin interaction. Therefore Fh_tH(x)n4U/M for 

X>>l . 
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Similarly, for a light parton turning into a heavy hadron, 

Finally I consider Fh-,LIXj for x not too large,i.e. W=i/X"EJ/~. 

In this case the dominant soft parts are as shown in fig. 11. They 

represent the unfolding of a jet of light particles. Again the 

hard contracted vertex part has a counterterm. The hard subdiagrams, with 

momenta SM , to leading order are proportional to yt Thus the MO 

behavior cancels between term and counterterm. 

The correction to the leading behavior of the hard subdiagrams is 

*$/Ma and 

Fh-, c 
(Xl -b fia:Fdh f”’ w “P/M 

As an example of the suppression for F,,->H 

gram for fig. 12. 

Fig. 12a is: 

= 50-n) ctn+d'k 
f 

, consider the FF dia- 

kkhl%it 

BC k~‘)j 

_e’ cpdf I 

k+ tit [ 6% t+ * f-!!+ (+'t') ) 2 $11 

a+ fn 

where x is the usual ratio of initial and final plus momenta. 

Fig. 12b is: 

Including the counterterms and integrating over k yields approximately 

(for lk+':,c): 
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Fig. lza: * 
s c 

-P 

‘:, 

Fig. 12b: A~: ij (~ t,\* ) I,*! 'I q - ‘?‘I 
- 

When k+ is not small, each diagram is suppressed. Upon adding the 

two, and integrating over their initial plus momenta, one obtains: 

7’. ,,1.-:q’) ;. i,jb’ L 
? 

>,T p ‘p i; .lJ+ I N /J4a 

t., :\ 
SK‘!\ ’ 

t 
i ,,,< i ; ‘. , 

.: 77% 
C4; t-j 0 

Thus the fig. 12 contribution to the FF is suppressed as expected, 

since there is no dominant soft configuration of the fig. 10 type. 

IID - The Shape of Fb:-;,; 

I now consider the behavior of FiTi& 3 CX) cth+l. I have shown that 

F b+n~k/,.i jor~$ and that this is due to an order "ilq correction to the 

soft part. The contribution of the hard part, since it is incompletely can- 

celled, is order one for this leading behavior. The soft part is approximately 

a delta function bCFp'1 , where !-% <yr) is its initial (final) plus momen- 

tum. It is therefore independent of x . The hard part remains order one 

for all x , including x near 1 Thus Fhz.h has a contribution that is of 

order Hw independent of x 
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At some point other types of contributions will become bigger than 

~1 . As x goes to 1 essentially the whole of the FF comes from reduced 

configurations in which the initial heavy line is close to shell and dressed 

softly into the hadron. They make K,-,, order one for x close enough to 

1. There is no unphysical part and no suppression. 

As long as r-1 ~"i"*/I",*t,, e argument showing suppression holds good. 

One can still divide the fragmentation into hard and soft parts. But the 

hard part, unlike the soft, does depend on x , and the suppression of its con- 

tribution is weakened as C-, 1 

I will therefore determine the leading behavior in \/Cd-i') of the 

hard part as Y--I , but with r-b ,>~'/p/,i. 

Let Hc:! denote a hard subdiagram integrated over transverse momenta .?M 

with two heavy external lines at momentum tv l$iP). Define 

\i ' (~ t \ = t f b [ IW+r"l\1 w-j - 
k;' 

Note first that 

1.1 : ,L ', : \i b L, b i i I; ;~ #+ \/ /M‘" 1 

‘+pLk) is !T’Ck! with all light masses set to zero. The above follows 

since h(k) is off shell. 

The MO behavior of H is cancelled by the subtraction of a counterterm. 

The difference is: 

If the soft part sf,:,r i is not suppressed then, as assumed in the above 

expression, C‘- pYI',": 
a/ ~, 1 :, < i ,, +- - cc r^x ,- The leading large scale 

dependence of the difference can be approximated by taking F-F-~ to be 
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infinitesimal and replacing subtraction by differentiation. 

The leading reduced configurations cause an IR divergence of this 

differentiated object at x=1 The leading behavior in l/(x-l) as x+1 is 

just the strength of this divergence. It can be established by the IR power 

counting technique of refs. 8, 9. 

The divergence in Ho integrated down to x=1 is logarithmic, by these 

methods. The derivatives give an additional heavy propagator going on shell 

as +-'1. The extra propagator changes the strength of the divergence from 

logarithmic to linear. Only the term of the FF involving the difference of 

a divergent hard subdiagram and its counterterm has this linear rise. 

The behavior determined above is: 

,u.f - /_ .L ,">", ( < ? ^, ; /-‘/Ml _~ y,yj ; i,., '_Y ,:a ,xX/ IV 

+'r 

It becomes dominant when ,Q/M C.&M'&,\ :~b %-I c &G 

Eventually the l/(x-l? behavior of FhAH is cut off. For x-l small 

enough it becomes a bad approximation to replace the difference of H and its 

counterterm by a derivative. Clearly it must hold that iiik>- ?!~~):H(pZ)or 

l/t\ N&X : '/i Thus the i/c<-~\~ is cut off roughly when X-1 - @=/ML 

The shape of ,Yk_,,i is pictured in fig. 13. 

Lastly, notice that the '!i.~i' behavior of i',-,!.,.+ comes from a part 

of the fragmentation which is hard. Momenta squared in this part are(from the 
power counting argument) 
typically 5tx-l)ha I which is l)iL;* in the region where one expects to see 

this behavior. Thus for anonabeliangau~etheory,asymptotic freedom should apply. The 
hard part 

"should be given, up to logarithmic corrections \/lh(l(-$$/@ by the lowest order 

graph, with the coupling constant g renormalized at the scale i*.-L!,Y' . 
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IIE - Normalization Of ,-.-, \j 

I wish in this section to derive the overall normalization of F using 

the energy-momentum sum rule. In doing so I will need to know the total 

average energy going into light particles from a fragmenting heavy parton: 

!F ‘; ,,,- ,L .‘l, ‘-A, ‘L+v - 
v 

Therefore, I will now discuss the behavior of En-,iLw‘i as w becomes small. 

As in the last section, the argument for suppression and the division 

of the fragmentation into hard and soft parts work as long as i#P-lpq . 

Unlike the previous case, the soft part is order one independent of 

its initial or final plus momentum. The contribution of the contracted vertex 

is my;ill"S' , > but its suppression is weakened as its external legs carry off 

less and less of the starting plus momentam. 

As w-)0 , there is an order one contribution to F ,,+,- due to configura- 

tion like that in fig. 14. The reduced diagram shows the heavy quark propa- 

gating with unchanged momentum across the cut. It interacts with a soft cloud 

that includes the final hadron lines. 

It is the influence of such a configuration that weakens the hard 

part's suppression. 

Consider therefore H:t‘j , a subdiagram with two light external fer- 

mion legs . (The treatment of the gluon case is similar.) Define H'(r) = 

LTry-H. As before: 1 

h’\b ‘,x \iCjik 1 \+ t) ; ,uYpq i, ) 

For w not too small: 

I ask again what is the strength of the IR divergence in this differen- 

tiated object as W-'G , as a dominant configuration is approached. 
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Take Ho '13,~ \ first. Normally a configuration with a heavy quark 

and soft cloud would give, by power counting, a logarithmic divergence. This 

is modified here because the external lines are included in the soft cloud. 

Normallytheirrromentumwould be integrated, but is not here. Also the mass 

shell delta function and numerator momentum factor associated with an ordinary 

cut line are missing. 

These changes imply that h~~i\“-~l*,~-. iis !sV-bG 
'U, ' 

The differentiated object behaves like d i~ii;[ki! *, id!' . As be- 

dk‘ 'frc 
fore, the derivative adds an extra propagator. 

Finally, recall that ( t- z m? Yb,irV '/,,J . Therefore 

ii i:) - Ii, pc,', -I 2 /2/,q" s:, i ,I2 --> t3 

,A, ' -. 

This behavior will be cut off when '/a3 , or when W-JYJM 

The energy-momentum sum rule is: 
, 

The extra w occurs on the right to make H' a physical probability to produce 

a light fermion. Recall that H was defined by tracing with a ‘(- What 

is needed here is a trace with the usual final particle factor 4,~ /of%“* WY‘. 

Then 

As above c- ,QJ~ Fl;r w r; 5, F,,p 5 '/A+ 

I 
Thus: t :- ‘. -- m,,i ,A, i ‘&*i ‘j I”./,“, 

v ,‘,’ 

: ; 
r_ ~ ‘--\ . . i ‘,‘I ” -1 .i w A,_C 1~ 1 * ik,ic,:,Yj 

-iv 

Again, the ~]vJ; behavior of Fh-,iibj is due to a hard part of 

the fragmentation, where momenta squared are typically ;uil”. For an asymptotically free 
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Aof the I:,~. 5 \.,?/d behavior should be asymptotically calculable from the low- 

est order graphs for H . 

: '+):'I is shown in fig. 15. j b,->i. 

As an illustration of the above general argument consider the fragmen- 

tation of a heavy quark to a final light scalar particle, shown in fig. 16. 

Fig. 16 and its counterterm diagram give: 

wp- d~--LLA~ .i (~~p%tM’: N-ftM) (Ik+M))&-$~~ 

= --xm\ L 16MS 
x 

G -k++W\h 
a i 

$ AL. \h M/rM’+ X(%-I) p”) 

pa C yC<- ilpS 
YiY- 1) I 

For 'U==\/Xcc \ , but \rl>,,q 
Ill 

$p", this is: 

“, &-r i+pw 
-huh FM” 

The average total energy carried off by light scalar particles is: 

I I 
! [-,s - cd uJ3du ,pd !’ UJ $> [yy y P/,/q 
0 F”fM 
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IIF - The Heavy Quark Spin 

As remarked in IIC, the spin of the heavy quark does not flip in the 

soft physical part of the fragmentation. I have shown that physical configu- 

rations make the dominant contribution to the FF, so that the quark does not 

flip at all while fragmenting. Each spin flip is suppressed by a factor-p/M. 

I can take advantage of this by rephrasing the original discussion. 

I will rewrite: 

dl3, _ ( ?j>, Y1 ph ‘i r i d?,l, ( ii;=, P,) Fly ) 
i’ s -’ ii+ +% i:v 

Z j\ cl -,, /j eL i (p;-‘-,Lp Fhi‘->ii * G+f--;b,:i/ Fb& --,t+ v, i ,, ,” 
f <crt- -> hi\ ‘5 now the probability to'produce an on shell heavy quark with 

a particular helicity. ?h:--Jit describes the fragmentation of such a quark 

to the hadron. 

This is realized by defining C and counterterms with a spin projection 

matrix. A factor QAXj Y) (PC +~V~ip~~ is included on the external lines 

instead of T-; +I\, ;, r( 

- bq ,- 
' r,: -", ii is defined in the same way as i?t. .) ,+ ' except that 

an initial x'+ / 1+3;1/~ ('35 
-i for the other spin) replaces the initial 

y+ This determines then the initial helicity of the fragmenting quark. 

Also, I no longer insist that a spin sum for the final hadron be performed. 

The renormalized Frens ( '-! 

i 

::'I ) satisfies: 
? 

r -<-, \ ', T ! : ') Iz y q 3~ 'n 4 ) t), , 'j 
, 'L 

,I,: 
where \C !~ :-‘! is a two by two matrix. (I ignore the mixing with gluons, 

since it is not relevant.) 
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The finiteness of cre*, and factorization can be shown as before. Sim- 

ilarly one shows that ,I+, &-*'i 'l,u:,I't'g a constant vector. However because 

the spin of the quark does not flip, ,K,,,T-\,+~ F1. b --\I :, are not suppressed 

only when the heavy quark in the final state H has the same helicity as the 

fragmenting quark. 

The production of a final state with a given spin for the heavy quark 

is given approximately by the Wilson coefficient for the production of a 

heavy quark with that spin. Corrections to this result are of orderP/M. 
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Figure 1: G (!i‘,p', r- c)!kup) , acut Green's function describing the pro- 

cess Tf'i[i) -> tic.rl t U. Slashed lines are amputated. 

Figure 2. A cut Green's function used in the definition of the FF 

Figure 3. A diagram for F"' :I<,', p 1 

Figure 4. cc --r I, ( i'id pi. A double line is heavy. 

Figure 5. A diagram and counterterm diagram for Fke' 

Figure 6. The cancellation of the leading kl" behavior of an unphysical con- 

tribution to r"-' 

Figure 7. Cut Green's functions used in the definition of the FF for an abel- 

ian gauge theory. 

Figure 8. Divergent subdiagrams of the unrenormalized fermion FF. 

Figure 9. Divergent subdiagrams related by gauge invariance. 

Figure 10. #~$e;~aconfiguration for r-l?,,,,. All lines in the soft blob have near zero 

Figure 11. Leading configuration for F(y,L. All lines in the reduced 

diagram are near shell and either collinear with the final hadronor at near zero 
momentum. 

Figure 12. Diagrams for cc-,li 

Figure 13. II'_:,,, i * 1 

Figure 14. A leading configuration at w=O for I‘+-> L . Lines in the soft blob have near 
zero momenta. 

Figure 15. p- -Pn 
r,-,i id 

Figure 16. Example of a diagram for ?+ii 
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